Skip to main content
stacked poplar logs

Popular wisdom holds tall, fast-growing trees are best for biomass, but new research by two U.S. Department of Energy national laboratories reveals that is only part of the equation.

3D printed EMPOWER wall drawing

Oak Ridge National Laboratory researchers used additive manufacturing to build a first-of-its kind smart wall called EMPOWER.

Unique imaging capabilities yield new knowledge, growth for bioeconomy

Scientists at the Department of Energy’s Oak Ridge National Laboratory have a powerful new tool in the quest to produce better plants for biofuels, bioproducts and agriculture.

Researchers at DOE’s Manufacturing Demonstration Facility at ORNL developed a reusable face mask prototype with injection molding that will enable industry to rapidly manufacture. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the fight against the COVID-19 pandemic, it’s a race against the clock not only to find a vaccine but also to supply healthcare workers with life-saving equipment such as face shields, masks and test kits.

Coronavirus graphic

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

ORNL scientists are combining their expertise in environmental science, physics, sensors and additive manufacturing to create model fish for use in testing of hydropower turbine designs. The project supports healthy ecosystems and hydropower—the nation’s largest renewable energy resource. Photo credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.

Hydropower developers must consider many factors when it comes time to license a new project or renew an existing one: How can environmental impacts be mitigated, including to fish populations?

Starch granules

Scientists at the Department of Energy’s Oak Ridge National Laboratory have developed a new method to peer deep into the nanostructure of biomaterials without damaging the sample. This novel technique can confirm structural features in starch, a carbohydrate important in biofuel production.

Peter Wang

Peter Wang is focused on robotics and automation at the Department of Energy’s Manufacturing Demonstration Facility at ORNL, working on high-profile projects such as the MedUSA, a large-scale hybrid additive manufacturing machine.

Shown here is a computer-aided design of the hot stamping die with visible cooling channels. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers demonstrated that an additively manufactured hot stamping die can withstand up to 25,000 usage cycles, proving that this technique is a viable solution for production.

A new method uses E. coli to generate DNA with methylation patterns that target microbes recognize and accept as their own, facilitating customization of microbes for biofuels production.

Scientists at the US Department of Energy’s Oak Ridge National Laboratory have demonstrated a method to insert genes into a variety of microorganisms that previously would not accept foreign DNA, with the goal of creating custom microbes to break down plants for bioenergy.