Skip to main content
An Oak Ridge National Laboratory study projects how geothermal heat pumps that derive heating and cooling from the ground would improve grid reliability and reduce costs and carbon emissions when widely deployed. Credit: Chad Malone, ORNL, U.S. Dept. of Energy

A modeling analysis led by ORNL gives the first detailed look at how geothermal energy can relieve the electric power system and reduce carbon emissions if widely implemented across the United States within the next few decades. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

An encapsulation system developed by ORNL researchers prevents salt hydrates, which are environmentally friendly thermal energy storage materials, from leaking and advances their use in heating and cooling applications. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have developed a novel way to encapsulate salt hydrate phase-change materials within polymer fibers through a coaxial pulling process. The discovery could lead to the widespread use of the low-carbon materials as a source of insulation for a building’s envelope.

Conversion of an atomic structure into a graph, where atoms are treating as nodes and interatomic bonds as edges. Credit: Massimiliano “Max” Lupo Pasini/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge and Lawrence Berkeley National Laboratories are evolving graph neural networks to scale on the nation’s most powerful computational resources, a necessary step in tackling today’s data-centric

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Prasanna Balaprakash, who leads ORNL’s AI Initiative, participated in events hosted by the White House Office of Science and Technology Policy and the Task Force on American Innovation to discuss the challenges and opportunities posed by AI. Credit: Brian Mosley/Computing Research Association

In summer 2023, ORNL's Prasanna Balaprakash was invited to speak at a roundtable discussion focused on the importance of academic artificial intelligence research and development hosted by the White House Office of Science and Technology Policy and the U.S. National Science Foundation.

2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

Photo by James Wainscoat on Unsplash.

A team of researchers from the University of Southern California, the Renaissance Computing Institute at the University of North Carolina, and Oak Ridge, Lawrence Berkeley and Argonne National Laboratories have received a grant from the U.S. Department of Energy to develop the fundamentals of a computational platform that is fault tolerant, robust to various environmental conditions and adaptive to workloads and resource availability.

A researcher plays checkers against an AI-powered robotic arm in 1984. Credit: ORNL, U.S. Dept. of Energy

Despite its futuristic essence, artificial intelligence has a history that can be traced through several decades, and the ORNL has played a major role. From helping to drive fundamental and applied AI research from the field’s early days focused on expert systems, computer programs that rely on AI, to more recent developments in deep learning, a form of AI that enables machines to make evidence-based decisions, the lab’s AI research spans the spectrum.

The AI agent, incorporating a language model-based molecular generator and a graph neural network-based molecular property predictor, processes a set of user-provided molecules (green) and produces/suggests new molecules (red) with desired chemical/physical properties (i.e. excitation energy). Image credit: Pilsun You, Jason Smith/ORNL, U.S. DOE

A team of computational scientists at ORNL has generated and released datasets of unprecedented scale that provide the ultraviolet visible spectral properties of over 10 million organic molecules.