Skip to main content
A study led by ORNL researchers examines the causes behind ordering of cations, the positive ions that help make double perovskite oxides look promising as an energy source. Credit: Getty Images

A study led by researchers at ORNL could uncover new ways to produce more powerful, longer-lasting batteries and memory devices.

An Oak Ridge National Laboratory study compared classical computing techniques for compressing data with potential quantum compression techniques. Credit: Getty Images

A study led by Oak Ridge National Laboratory researchers identifies a new potential application in quantum computing that could be part of the next computational revolution.

A researcher works in a lab in the Radiochemical Engineering and Development Center, or REDC,  at ORNL’s main campus. The REDC provides world-class capabilities in isotope production, research and development, source fabrication, and the distribution of various unique isotopes. Here, experts handle some of the most exotic materials in the world. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

A series of new classes at Pellissippi State Community College will offer students a new career path — and a national laboratory a pipeline of workers who have the skills needed for its own rapidly growing programs.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

Alice Perrin is a Distinguished Staff Fellow and materials scientist at Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Alice Perrin is passionate about scientific research, but also beans — as in legumes.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.

ORNL Weinberg Fellow Addis Fuhr uses quantum chemistry and machine learning methods to advance new materials. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When Addis Fuhr was growing up in Bakersfield, California, he enjoyed visiting the mall to gaze at crystals and rocks in the gem store.

A team of ORNL researchers used neutron diffraction experiments to study the 3D-printed ACMZ alloy and observed a phenomenon called “load shuffling” that could inform the design of stronger, better-performing lightweight materials for vehicles. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have identified a mechanism in a 3D-printed alloy – termed “load shuffling” — that could enable the design of better-performing lightweight materials for vehicles.

Oak Ridge National Laboratory materials scientist Zhili Feng, left, looks on as senior technician Doug Kyle operates a welding robot inside a robotic welding cell. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The U.S. Departments of Energy and Defense teamed up to create a series of weld filler materials that could dramatically improve high-strength steel repair in vehicles, bridges and pipelines.