Skip to main content
The proposed Battery Identity Global Passport suggests a scannable QR code or other digital tag affixed to Li-ion batteries to identify materials for efficient end-of-life recycling. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have devised a method to identify the unique chemical makeup of every lithium-ion battery around the world, information that could accelerate recycling, recover critical materials and resolve a growing waste stream.

Urban climate modeling

Researchers at Oak Ridge National Laboratory have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.

The pressure cell uses two gem-quality synthetic opposing diamonds to exert extreme pressures on materials, providing fundamental insights into materials that only neutrons can reveal. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory’s Spallation Neutron Source have developed a diamond anvil pressure cell that will enable high-pressure science currently not possible at any other neutron source in the world.

Saplings in an aspen grove recovering from wildfire have more fungal pathogens in their leaves than the original trees. Credit: Chris Schadt/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory research team discovered that aspen saplings emerging after wildfire have less diverse microbiomes and more pathogens in their leaves, providing new insights about how fire affects ecosystem recovery.

ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.

Permafrost

A study by Oak Ridge National Laboratory, the University of Copenhagen, the National Park Service and the U.S. Geological Survey showed that hotter summers and permafrost loss are causing colder water to flow into Arctic streams, which could impact sensitive fish and other wildlife.

ORNL recognized the small businesses that have made a positive impact on ORNL’s operations at the virtual 2020 Small Business Awards. Credit: ORNL, U.S. Dept. of Energy

Thirty-two Oak Ridge National Laboratory employees were named among teams recognized by former DOE Secretary Dan Brouillette with Secretary’s Honor Awards as he completed his term. Four teams received new awards that reflect DOE responses to the coronavirus pandemic.

Pella Marion

A new Department of Energy report produced by Oak Ridge National Laboratory details national and international trends in hydropower, including the role waterpower plays in enhancing the flexibility and resilience of the power grid.

Deep-sea hydrothermal vent chimneys on Brother’s Volcano’s northwest caldera wall create a unique environment for microbes. Credit: Anna-Louise Reysenbach, NSF, ROV Jason and 2018 ©Woods Hole Oceanographic Institution

Oak Ridge National Laboratory contributed to an international study that found almost 300 novel types of microbes living near a deep sea volcano. These microbes, which could be used in biotechnology, reveal new insights about their extreme underwater environment.