Skip to main content
solid-state electrolyte to double as energy storage in a car

To speed the arrival of the next-generation solid-state batteries that will power electric vehicles and other technologies, scientists led by ORNL advanced the development of flexible, durable sheets of electrolytes. They used a polymer to create a strong yet springy thin film that binds electrolytic particles and at least doubles energy storage. 

The seven entrepreneurs for Cohort 2024

Seven entrepreneurs comprise the next cohort of Innovation Crossroads, a DOE Lab-Embedded Entrepreneurship Program node based at ORNL. The program provides energy-related startup founders from across the nation with access to ORNL’s unique scientific resources and capabilities, as well as connect them with experts, mentors and networks to accelerate their efforts to take their world-changing ideas to the marketplace.

Power lines to the right, colorful graphs to the left and in the middle is a cord putting out electrical currents.

Researchers at Oak Ridge National Laboratory have opened a new virtual library where visitors can check out waveforms instead of books. So far, more than 350 users worldwide have utilized the library, which provides vital understanding of an increasingly complex grid.

Headshot of Clarice Phelps

Leadership Tennessee has named Clarice Phelps to its 2024–2025 Signature Program Class XI to collaborate with professionals statewide to address Tennessee’s most serious issues. 

White car (Porsche Taycan) with the hood popped is inside the building with an american flag on the wall.

Researchers at ORNL have successfully demonstrated the first 270-kW wireless power transfer to a light-duty electric vehicle. The demonstration used a Porsche Taycan and was conducted in collaboration with Volkswagen Group of America using the ORNL-developed polyphase wireless charging system.

Two green oak leaves with other matter in two circles above them. To the right, a yellow blob. To the left, a brown material inside a bowl.

Oak Ridge National Laboratory scientists ingeniously created a sustainable, soft material by combining rubber with woody reinforcements and incorporating “smart” linkages between the components that unlock on demand.

Red background fading into black from top to bottom. Over top the background are 20 individual rectangles lined up in three rows horizontally with a red and blue line moving through it.

ORNL scientists develop a sample holder that tumbles powdered photochemical materials within a neutron beamline exposing more of the material to light for increased photo-activation and better photochemistry data capture.

Photo of glowing, pink diamond-shaped figure. This is illuminated with light, encircled with a wreath of around 70 blue tube-like shapes.

Scientists have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory, opening a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.

Caption: The Na-CO2 battery developed at ORNL, consisting of two electrodes in a saltwater solution, pulls atmospheric carbon dioxide into its electrochemical reaction, and releases only valuable biproducts. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. 

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.