Skip to main content
An encapsulation system developed by ORNL researchers prevents salt hydrates, which are environmentally friendly thermal energy storage materials, from leaking and advances their use in heating and cooling applications. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have developed a novel way to encapsulate salt hydrate phase-change materials within polymer fibers through a coaxial pulling process. The discovery could lead to the widespread use of the low-carbon materials as a source of insulation for a building’s envelope.

ORNL researchers found that a polyelectrolyte additive can improve the stability and performance of a salt hydrate PCM, enhancing the potential for use in heat pumps. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers demonstrated that an additive made from polymers and electrolytes improves the thermal performance and stability of salt hydrate phase change materials, or PCMs, a finding that could advance their integration into carbon-reducing heat pumps.

A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.

Researchers at Oak Ridge National Laboratory discovered a tug-of-war strategy to enhance chemical separations needed to recover critical materials. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

ORNL scientists combined two ligands, or metal-binding molecules, to target light and heavy lanthanides simultaneously for exceptionally efficient separation.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

ORNL researchers have developed a free online tool for homeowners, equipment manufacturers and installers to calculate the savings and energy efficiency of ground source heat pump systems compared to traditional heating, ventilation and air conditioning systems. Credit: ORNL, U.S. Dept. of Energy

A tool developed by ORNL researchers gives building owners and equipment manufacturers and installers an easy way to calculate the cost savings of a heating and cooling system that utilizes geothermal energy and emits no carbon.

Oak Ridge National Laboratory researchers tested the performance of cellular shades in a two-story residential home in the Southeast and proved coverings with a honeycomb structure provide significant energy savings during winter and can potentially reduce carbon emissions. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that window shades with a cellular or honeycomb structure provide higher energy savings during winter compared to generic venetian blinds and can save millions of tons of carbon emissions. 

Even small movements of hydrogen, shown in yellow, were found to cause large energy shifts in the attached iron atoms, shown in silver, which could be of interest in creating novel chemical reactions. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Researchers from Yale University and ORNL collaborated on neutron scattering experiments to study hydrogen atom locations and their effects on iron in a compound similar to those commonly used in industrial catalysts.

Researchers observe T-shaped cluster drives lanthanide separation system during liquid-liquid extraction. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

Researchers at ORNL zoomed in on molecules designed to recover critical materials via liquid-liquid extraction — a method used by industry to separate chemically similar elements.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.