Skip to main content
Wire arc additive manufacturing allowed this robot arm at ORNL to transform metal wire into a complete steam turbine blade like those used in power plants. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL became the first to 3D-print large rotating steam turbine blades for generating energy in power plants.

Group image

In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s Oak Ridge National Laboratory have developed a novel technique to visualize molten salt intrusion in graphite.

ZEISS Head of Additive Manufacturing Technology Claus Hermannstaedter, left, and ORNL Interim Associate Laboratory Director for Energy Science and Technology Rick Raines sign a licensing agreement that allows ORNL’s machine-learning algorithm, Simurgh, to be used for rapid evaluations of 3D-printed components with industrial X-ray computed tomography, or CT. Using machine learning in CT scanning is expected to reduce the time and cost of inspections of 3D-printed parts by more than ten times.

A licensing agreement between the Department of Energy’s Oak Ridge National Laboratory and research partner ZEISS will enable industrial X-ray computed tomography, or CT, to perform rapid evaluations of 3D-printed components using ORNL’s machine

A researcher works in a lab in the Radiochemical Engineering and Development Center, or REDC,  at ORNL’s main campus. The REDC provides world-class capabilities in isotope production, research and development, source fabrication, and the distribution of various unique isotopes. Here, experts handle some of the most exotic materials in the world. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

A series of new classes at Pellissippi State Community College will offer students a new career path — and a national laboratory a pipeline of workers who have the skills needed for its own rapidly growing programs.

Jason Gardner, Sandra Davern and Peter Thornton have been elected fellows of AAAS. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

Three scientists from the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Association for the Advancement of Science, or AAAS.

Researchers at Oak Ridge National Laboratory probed the chemistry of radium to gain key insights on advancing cancer treatments using radiation therapy. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.

ORNL’s RapidCure improves lithium-ion electrode production by producing electrodes faster, reducing the energy necessary for manufacturing and eliminating the need for a solvent recycling unit. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.

Oak Ridge National Laboratory’s Mitch Allmond works with the Facility for Rare Isotope Beams Decay Station initiator, which combined diverse detectors for FRIB’s first experiment. Credit: Robert Grzywacz/ORNL, U.S. Dept. of Energy

Two decades in the making, a new flagship facility for nuclear physics opened on May 2, and scientists from the Department of Energy’s Oak Ridge National Laboratory have a hand in 10 of its first 34 experiments.

A smart approach to microscopy and imaging developed at Oak Ridge National Laboratory could drive discoveries in materials for future technologies. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

High voltage power lines carry electricity generated by the Tennessee Valley Authority to ORNL. Credit: Dobie Gillispie/ORNL, U.S. Dept. of Energy

ORNL and the Tennessee Valley Authority, or TVA, are joining forces to advance decarbonization technologies from discovery through deployment through a new memorandum of understanding, or MOU.