Skip to main content
Hood Whitson, chief executive officer of Element3, and Cynthia Jenks, associate laboratory director for the Physical Sciences Directorate, shake hands during the Element3 licensing event at ORNL on May 3, 2024. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A collection of seven technologies for lithium recovery developed by scientists from ORNL has been licensed to Element3, a Texas-based company focused on extracting lithium from wastewater produced by oil and gas production. 

Alexey Serov researches ways to improve hydrogen fuel cells and materials and the electrolysis process. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

It would be a challenge for any scientist to match Alexey Serov’s rate of inventions related to green hydrogen fuel. But this researcher at ORNL has 84 patents with at least 35 more under review, so his electrifying pace is unlikely to slow down any time soon.

Ramesh Bhave in lab

Caldera Holding, the owner and developer of Missouri’s Pea Ridge iron mine, has entered a nonexclusive research and development licensing agreement with ORNL to apply a membrane solvent extraction technique, or MSX, developed by ORNL researchers to mined ores.

ZEISS Head of Additive Manufacturing Technology Claus Hermannstaedter, left, and ORNL Interim Associate Laboratory Director for Energy Science and Technology Rick Raines sign a licensing agreement that allows ORNL’s machine-learning algorithm, Simurgh, to be used for rapid evaluations of 3D-printed components with industrial X-ray computed tomography, or CT. Using machine learning in CT scanning is expected to reduce the time and cost of inspections of 3D-printed parts by more than ten times.

A licensing agreement between the Department of Energy’s Oak Ridge National Laboratory and research partner ZEISS will enable industrial X-ray computed tomography, or CT, to perform rapid evaluations of 3D-printed components using ORNL’s machine

Researchers at Oak Ridge National Laboratory discovered a tug-of-war strategy to enhance chemical separations needed to recover critical materials. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

ORNL scientists combined two ligands, or metal-binding molecules, to target light and heavy lanthanides simultaneously for exceptionally efficient separation.

Researchers observe T-shaped cluster drives lanthanide separation system during liquid-liquid extraction. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

Researchers at ORNL zoomed in on molecules designed to recover critical materials via liquid-liquid extraction — a method used by industry to separate chemically similar elements.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.

Seven scientists at the Department of Energy’s Oak Ridge National Laboratory have been named Battelle Distinguished Inventors, in recognition of their obtaining 14 or more patents during their careers at the lab. Credit: ORNL, U.S. Dept. of Energy

Seven scientists at the Department of Energy’s Oak Ridge National Laboratory have been named Battelle Distinguished Inventors, in recognition of their obtaining 14 or more patents during their careers at the lab.

ORNL’s RapidCure improves lithium-ion electrode production by producing electrodes faster, reducing the energy necessary for manufacturing and eliminating the need for a solvent recycling unit. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.

Oak Ridge National Laboratory’s Ramesh Bhave partnered with Momentum Technologies to develop a modular, scalable system for recycling scrap permanent magnets in e-waste. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory and Momentum Technologies have piloted an industrial-scale process for recycling valuable materials in the millions of tons of e-waste generated annually in the United States.