Skip to main content
Wang, Cook and Uddin portraits side by side

Three transportation researchers at the Department of Energy’s Oak Ridge National Laboratory have been elevated to senior member grade of the Institute of Electrical and Electronics Engineers, or IEEE.

Daryl Yang standing on a bridge overlooking a pond covered in water lillies

Daryl Yang is coupling his science and engineering expertise to devise new ways to measure significant changes going on in the Arctic, a region that’s warming nearly four times faster than other parts of the planet. The remote sensing technologies and modeling tools he develops and leverages for the Next-Generation Ecosystem Experiments in the Arctic project, or NGEE Arctic, help improve models of the ecosystem to better inform decision-making as the landscape changes.

forest under study in Panama

Scientists using high-resolution aerial scans and computational modeling concluded that wildfires, storms and selective logging have become key drivers behind rainforest carbon emissions, outpacing clear-cutting practices.

Researchers from ORNL and Western Michigan University prepare for a Chattanooga-based demonstration of a self-driving car using chip-enabled raised pavement markers for navigation.

ORNL has partnered with Western Michigan University to advance intelligent road infrastructure through the development of new chip-enabled raised pavement markers. These innovative markers transmit lane-keeping information to passing vehicles, enhancing safety and enabling smarter driving in all weather conditions.

From left, Sedrick Bouknight and Matthias Maiterth of ORNL’s Analytics and AI Methods at Scale group demonstrate the VR capabilities of the Frontier digital twin project's ExaDIGIT framework. Using VR allows Frontier's operators to exam the system's telemetry in a more interactive and intuitive way.

As high-tech companies ramp up construction of massive data centers to meet the business boom in artificial intelligence, one component is becoming an increasingly rare commodity: electricity. Since its formation in 2004, the OLCF has fielded five generations of world-class supercomputing systems that have produced a nearly 2,000 times reduction in energy usage per floating point operation per second, or flops. With decades of experience in making HPC more energy efficient, the OLCF may serve as a resource for best “bang for the buck” practices in a suddenly burgeoning industry.

ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

Wavy photo representing high performance computing

Office of Science to announce a new research and development opportunity led by ORNL to advance technologies and drive new capabilities for future supercomputers. This industry research program worth $23 million, called New Frontiers, will initiate partnerships with multiple companies to accelerate the R&D of critical technologies with renewed emphasis on energy efficiency for the next generation of post-exascale computing in the 2029 and beyond time frame.

The Frontier supercomputer simulated magnetic responses inside calcium-48, depicted by red and blue spheres. Insights into the nucleus’s fundamental forces could shed light on supernova dynamics.

Nuclear physicists at the Department of Energy’s Oak Ridge National Laboratory recently used Frontier, the world’s most powerful supercomputer, to calculate the magnetic properties of calcium-48’s atomic nucleus. 

ORNL researchers Tom Beck, left, Sarp Oral and Rafael Ferreira da Silva have proposed a strategy for integrating classical supercomputers such as Frontier, the world’s first exascale computer, with the emerging field of quantum computing.

A study by more than a dozen scientists at the Department of Energy’s Oak Ridge National Laboratory examines potential strategies to integrate quantum computing with the world’s most powerful supercomputing systems in the pursuit of science.

solid-state electrolyte to double as energy storage in a car

To speed the arrival of the next-generation solid-state batteries that will power electric vehicles and other technologies, scientists led by ORNL advanced the development of flexible, durable sheets of electrolytes. They used a polymer to create a strong yet springy thin film that binds electrolytic particles and at least doubles energy storage.