Skip to main content
SM2ART team members receive the CAMX Combined Strength Award at the Georgia World Congress Center in Atlanta. Pictured here are, from left, ORNL’s Dan Coughlin, Sana Elyas, Halil Tekinalp, Amber Hubbard, Soydan Ozcan; University of Maine’s Susan MacKay, Angelina Buzzelli, Scott Tomlinson, Wesley Bisson; and ORNL’s Matt Korey and Vlastimil Kunc. Credit: University of Maine

The Hub & Spoke Sustainable Materials & Manufacturing Alliance for Renewable Technologies, or SM2ART, program has been honored with the composites industry’s Combined Strength Award at the Composites and Advanced Materials Expo, or CAMX, 2023 in Atlanta. This distinction goes to the team that applies their knowledge, resources and talent to solve a problem by making the best use of composites materials.

Two hybrid poplar plants, middle and right, engineered with the PtrXB38 hub gene exhibited a drastic increase in root and callus formation compared with a wild-type control plant, left. Credit: Tao Yao/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists identified a gene “hotspot” in the poplar tree that triggers dramatically increased root growth. The discovery supports development of better bioenergy crops and other plants that can thrive in difficult conditions while storing more carbon belowground.

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

ORNL’s additive manufacturing compression molding, or AMCM, technology can produce composite-based, lightweight finished parts for airplanes, drones or vehicles in minutes and could acclerate decarbonization for the automobile and aeropsace industries. 

An Oak Ridge National Laboratory-developed advanced manufacturing technology, AMCM, was recently licensed by Orbital Composites and enables the rapid production of composite-based components, which could accelerate the decarbonization of vehicles

3d prnited lunar rover wheel based on a NASA design

Researchers at the Department of Energy’s Oak Ridge National Laboratory, in collaboration with NASA, are taking additive manufacturing to the final frontier by 3D printing the same kind of wheel as the design used by NASA for its robotic lunar rover, demonstrating the technology for specialized parts needed for space exploration.

ORNL’s Fulvia Pilat and Karren More recently participated in the inaugural 2023 Nanotechnology Infrastructure Leaders Summit and Workshop at the White House, held Sept. 11–13. Credit: ORNL, U.S. Dept. of Energy

ORNL’s Fulvia Pilat and Karren More recently participated in the inaugural 2023 Nanotechnology Infrastructure Leaders Summit and Workshop at the White House.

Xiaohan Yang is using his expertise in synthetic biology and capabilities like the Advanced Plant Phenotyping Laboratory at Oak Ridge National Laboratory to accelerate the development of drought-tolerant, fast-growing bioenergy crops suited for conversion into clean jet fuels. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Scientist Xiaohan Yang’s research at the Department of Energy’s Oak Ridge National Laboratory focuses on transforming plants to make them better sources of renewable energy and carbon storage.

Benefit breakdown, 3D printed vs. wood molds

Oak Ridge National Laboratory researchers have conducted a comprehensive life cycle, cost and carbon emissions analysis on 3D-printed molds for precast concrete and determined the method is economically beneficial compared to conventional wood molds.

Scientists conducted microbial DNA sampling at a Yellowstone National Park hot spring for a study sponsored by DOE’s Biological and Environmental Research program, the National Science Foundation and NASA. Credit: Mircea Podar/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists studied hot springs on different continents and found similarities in how some microbes adapted despite their geographic diversity.

Chathuddasie Amarasinghe explains her research poster, “Using Microfluidic Mother Machine Devices to Study the Correlated Dynamics of Ribosomes and Chromosomes in Escherichia Coli.” Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Speakers, scientific workshops, speed networking, a student poster showcase and more energized the Annual User Meeting of the Department of Energy’s Center for Nanophase Materials Sciences, or CNMS, Aug. 7-10, near Market Square in downtown Knoxville, Tennessee.