Skip to main content
Mike Huettel

Mike Huettel is a cyber technical professional. He also recently completed the 6-month Cyber Warfare Technician course for the United States Army, where he learned technical and tactical proficiency leadership in operations throughout the cyber domain.

Cody Lloyd stands in front of images of historical nuclear field testing. The green and red dots are the machine learning algorithm recognizing features in the image. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Cody Lloyd became a nuclear engineer because of his interest in the Manhattan Project, the United States’ mission to advance nuclear science to end World War II. As a research associate in nuclear forensics at ORNL, Lloyd now teaches computers to interpret data from imagery of nuclear weapons tests from the 1950s and early 1960s, bringing his childhood fascination into his career

ORNL-developed software tools for identifying and quantifying energy efficiency will be demonstrated to participants during an Energy Bootcamp sponsored by DOE’s Industrial Efficiency and Decarbonization Office. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have developed a training camp to help manufacturing industries reduce energy-related carbon dioxide emissions and improve cost savings.

ORNL will collaborate with Fairbanks Morse Defense on decarbonization efforts to develop alternative fuel technologies for marine engines. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL, the Department of Energy’s largest multidisciplinary laboratory, and Fairbanks Morse Defense, a portfolio company of Arcline Investment Management, have entered into a Memorandum of Understanding to collaborate on the development and integration of alternative fuel technologies aimed at reducing the marine engine’s reliance on fossil fuels. 

Innovation Crossroads cohort 7

Seven entrepreneurs will embark on a two-year fellowship as the seventh cohort of Innovation Crossroads kicks off this month at ORNL. Representing a range of transformative energy technologies, Cohort 7 is a diverse class of innovators with promising new companies.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

Reuben Budiardja, an Oak Ridge National Laboratory computational scientist, worked with the early users who helped prepare Frontier, the world’s first exascale supercomputer, for scientific operations. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

With the world’s first exascale supercomputer now fully open for scientific business, researchers can thank the early users who helped get the machine up to speed.

 Illustration of a laser-based analytical method to accelerate understanding of critical plant and soil properties with the aim of co-optimizing bioenergy plant growth and soil carbon storage

Oak Ridge National Laboratory researchers recently demonstrated use of a laser-based analytical method to accelerate understanding of critical plant and soil properties that affect bioenergy plant growth and soil carbon storage.

TIP graphic

Scientist-inventors from ORNL will present seven new technologies during the Technology Innovation Showcase on Friday, July 14, from 8 a.m.–4 p.m. at the Joint Institute for Computational Sciences on ORNL’s campus.

ORNL researchers have enabled standard raised pavement markers to transmit GPS information that helps autonomous driving features function better in remote areas or in bad weather. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Working with Western Michigan University and other partners, ORNL engineers are placing low-powered sensors in the reflective raised pavement markers that are already used to help drivers identify lanes. Microchips inside the markers transmit information to passing cars about the road shape to help autonomous driving features function even when vehicle cameras or remote laser sensing, called LiDAR, are unreliable because of fog, snow, glare or other obstructions.