Skip to main content
Man in a beard holding tweezers, showing a bead if space glass closer to the screen.

Researchers set a new benchmark for future experiments making materials in space rather than for space. They discovered that many kinds of glass have similar atomic structure and arrangements and can successfully be made in space. Scientists from nine institutions in government, academia and industry participated in this 5-year study. 

With support from the Quantum Science Center, a multi-institutional research team analyzed the potential of particles that show promise for quantum applications. Credit: Pixabay

A team of researchers including a member of the Quantum Science Center at ORNL has published a review paper on the state of the field of Majorana research. The paper primarily describes four major platforms that are capable of hosting these particles, as well as the progress made over the past decade in this area.

From left, J.D. Rice, Trevor Michelson and Chris Seck look at a monitor in Seck’s lab. The three are wearing safety glasses to protect against the laser beams used by the scanning vibrometer, which is helping Seck quantify vibration of an appliance in his lab. Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL scientists are working on a project to engineer and develop a cryogenic ion trap apparatus to simulate quantum spin liquids, a key research area in materials science and neutron scattering studies.

ORNL researcher Felicia Gilliland loads experiment samples into position for the newly installed UR5E robotic arm at the BIO-SANS instrument. The industrial-grade robot changes samples automatically, reducing the need for human assistance and improving sample throughput. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

The BIO-SANS instrument, located at Oak Ridge National Laboratory’s High Flux Isotope Reactor, is the latest neutron scattering instrument to be retrofitted with state-of-the-art robotics and custom software. The sophisticated upgrade quadruples the number of samples the instrument can measure automatically and significantly reduces the need for human assistance.

A newly completed tunnel section will provide the turning and connecting point for the Spallation Neutron Source particle accelerator and the planned Second Target Station. Credit: ORNL, U.S. Dept. of Energy

The new section of tunnel will provide the turning and connecting point for the accelerator beamline between the existing particle accelerator at ORNL’s Spallation Neutron Source and the planned Second Target Station, or STS. When complete, the PPU project will increase accelerator power up to 2.8 megawatts from its current record-breaking 1.7 megawatts of beam power.

Researchers relied on support from ORNL’s Quantum Computing User Program to simulate a key quantum state at one of the largest scales reported. The findings could mark a step toward improving quantum simulations.  Credit: Getty Images

Researchers simulated a key quantum state at one of the largest scales reported, with support from the Quantum Computing User Program, or QCUP, at ORNL. 

3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

Astrophysicists at the State University of New York, Stony Brook, and University of California, Berkeley created 3D simulations of X-ray bursts on the surfaces of neutron stars. Two views of these X-ray bursts are shown: the left column is viewed from above while the right column shows it from a shallow angle above the surface.

Astrophysicists at the State University of New York, Stony Brook and University of California, Berkeley, used the Oak Ridge Leadership Computing Facility’s Summit supercomputer to compare models of X-ray bursts in 2D and 3D. 

Applications for the U.S. Quantum Information Science Summer School are open until March 15, 2024. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

From July 15 to 26, 2024, the Department of Energy’s Oak Ridge National Laboratory will host the second U.S. Quantum Information Science, or QIS, Summer School.

ORNL’s Nagi Rao discusses the lab’s deployed “dark fiber” testbed for quantum networking at SC23 in Denver, Colorado. Credit: Mariam Kiran/ORNL, U.S. Dept. of Energy

ORNL’s successes in QIS and its forward-looking strategy were recently recognized in the form of three funding awards that will help ensure the laboratory remains a leader in advancing quantum computers and networks.